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Abstract— This paper contains analysis of the bending beyond the elastic limit of an ideally elastic-
plastic beam which contains a through-thickness distribution of high initial stresses. This is relevant
to the analysis of service behaviour of components containing high residual stresses. such as might
arise from heat treatment followed by quenching, plastic deformation induced by shot-peening, cold
rolling. etc. The Timoshenko analysis of plastic bending of a beam is adapted for a particular case
of a parabolic residual stress distribution typical of quenching treatment in bar or plate form.
Attention is focused on the shake-down of residual stress. i.e.. the variation in the residual stress
and strain subsequent to bending. The implications of these resuits in terms of the analysis of
bending tests are discussed. «* 1997 Elsevier Science Lid.

1. INTRODUCTION

Optimisation of the mechanical properties of many engineering alloys often requires thermal
treatments which lead to strength improvements by precipitation hardening or phase trans-
formation. In many cases this involves solution heat treatment at temperatures close to the
alloy melting point, which is followed by quenching. Such treatments lead to the devel-
opment of self-equilibrated systems of stresses within components, which play an important
role in determining their service performance. especially under fatigue conditions (Cresdee
et al., 1993).

The motivation for the current analysis came from a series of experimental measure-
ments of internal strains made using neutron diffraction. Specimens in the form of bars
were machined from plates of a nickel-based superalloy. and ceramic particle reinforced
aluminium alloy matrix composites. The bars were heat treated and quenched into oil and
water, respectively, setting up high levels of self-equilibrating retained stresses, which in
this paper will be referred to as initial stresses. The bars were subsequently fatigued in a
four-point bending configuration. The purpose of the experimental strain measurements
was to assess the shake-down of initial stresses in fatigue.

In this paper, plastic bending theory is used to analyse the evolution of one particular
type of initial stress distribution : that which arises in materials due to quench treatment.
This treatment is known to produce parabolic stress variation through the specimen thick-
ness, when it is quenched in plate form (see Withers er a/.. 1995). The wide applicability of
this particular initial stress distribution is due to the fact that it is descried by the simplest
(lowest order) function which allows both stresses and moments to be balanced. It is worth
noting that in many practical situations the precise variation of the residual stresses is not
known. Quite often the stresses can be estimated. directly or indirectly, at the specimen
surface and somewhere in the bulk. Arguments of stress and moment balance then would
suggest that it is natural to approximate such distributions by parabolae.

In this paper the initial stresses present within the material prior to bending are
accounted for by introducing position-dependent asvmmetric yielding into the model. This
approach allows simple analytical solutions to be developed for the case of parabolic stress
distributions. Due to the presence of initial stresses. the material response is asymmetric
with respect to tension and compression, leading to premature yielding on the compressive
side of the beam and causing a corresponding delay in the initiation of plastic flow on the
tensile side. As a result. one-sided. or unilareral vielding takes place at moderate applied
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moment levels, with the neutral axis of the beam shifting away from the centre of the cross-
section. As the applied moment increases, further yielding may start to develop inwards
from the tensile surface of the beam, or, for certain levels of initial stresses, even initiate
within the beam thickness.

The phenomena outlined above are analysed and quantified in the following sections,
and possible applications of the resulting framework to the interpretation of experimental
data are outlined.

2. INELASTIC BENDING ANALYSIS

2.1. Formulation

Consider a beam of rectangular cross-section of width b and thickness 24, made of an
elastic—ideally plastic material having Young's modulus E and yield stress .. Pure bending
of the beam in the vertical plane will be considered, with the through-thickness coordinate
x measured from the mid-point. For the purposes of the analysis carried out in this paper
all linear dimensions will be normalised with respect to the beam half-thickness 4, so that
the vertical position is given by the dimensionless parameter ¢ = x/A. The stresses will also
be normalised with respect to the material yield stress o,. The dimensionless parameters
representing stresses will be denoted by 7, so that at a point £ one finds 7({) = a/g,. Further,
it is convenient to normalise moments with respect to the vield moment of an initially
unstressed beam, which is given by

I 2a.bk°
M, =20 22020 I
F= 3 (n

so that for the normalised moment m = M/M .

Let us assume that the beam is subjected to a parabolic initial stress profile characteristic
of the quenching treatment which was performed in plate form. The initial stress profile is
shown in Fig. 1(a). The distribution of the initial normalised stressed t, 1s given by the
equation (see Timoshenko and Goodier, 19653)

T(x) = g(1—3&%). (2)

Note the following features of this distribution:

(i) Initial stresses satisfy the conditions of stress and moment equilibrium within
the cross-section. This initial stress profile may be fully determined from these
conditions, given the value of the surface stress, based solely on the assumption
of stress variation being parabolic. ~

(ii) Initial stresses are compressive near the surface of the beam (|¢| > 1/\/3); they
reach a maximum magnitude of — 24 at the beam surfaces. The stresses are tensile
in the central part of the beam (|¢| < 1/,/3), and reach the maximum of g at the
beam centre.

(ii1) Provided no yielding has occurred due to quenching treatment alone, the par-
ameter ¢, which characterises the intensity of the initial stresses, varies within the
range 0 <¢<0.5.

Since the initial stress varies through the beam cross section, the yielding behaviour in
tension or compression will obviously depend on position. For any chosen coordinate &
within the beam cross-section, it is easy to determine the amount of tensile or compressive
axial stress which may be applied in order to attain the condition of yielding at that
point (as shown in Fig. 1(a) by solid arrows for tensile yielding and dashed arrows for
compressive). The values are given by
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Fig. 1. (a) Initial stress profile. arising due to quenching treatment. and the variation of the distances
from the tensile (——) and compressive (- - -) yield surfaces with position. (b) Asymmetric position
dependent yield surfaces 7, and ..

T, = l—g(l =3&). 3)
T.= —1—g(1 =3, (4)

where indices ¢ and ¢ indicate tension and compression, respectively.

It is proposed to use the following approach in order to account for this influence of
the initial stresses present in the beam on the material’s yielding behaviour. The initial
stresses are assumed invariant throughout the loading history. Moreover. since these stresses
satisfy both the force and moment equilibrium equations. they need not be considered at
all during the stress analysis. However, the above equations indicate that the yield surface
must be allowed to be position dependent and asymmetric with respect to the sign of the
loading (tension/compression), to account for the influence of the initial stresses on yielding.
This is depicted in Fig. 1(b), where the initial residual stresses have been collapsed onto the
© = 0 line, while the upper and lower parabolae, given by eqns (3) and (4) above, indicate
the modified tensile and compressive yield limits.
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There are various perspectives from which the parameters which describe the state of
bending and the yielding behaviour can be viewed. From the practical point of view, when
the external moment is applied. the parameters such as the extent of plastic zones, beam
curvature, etc., must be determined. However, it is instructive to reverse the order of
consideration in order to develop an analytical model. Namely, the value of one parameter,
such as the extent of the plastic zone, is assumed, and all others, including the applied
moment, consistent with this extent of plasticity, are calculated in the course of solution.

Once the stress distribution within the beam which is caused by applying a given
moment has been calculated, the process of elastic unloading is considered. The additional
plasticity-induced residual stresses can be determined in this way. Finally, in order to
estimate the shake-down of initial stresses caused by this loading cycle, the effect of these
bending-induced residual stresses is superimposed on the initial parabolic quench stresses
to obtain the final residual stress distribution.

2.2. Unilateral yielding

Let us start by considering an early stage of the loading cycle, when the applied
moment is low, so that yielding has not occurred anywhere in the section. Under these
conditions the beam behaves in a fully elastic manner. The neutral axis coincides with the
cross-section centroid, and both strains and stresses vary linearly with the distance from
the neutral axis, i.e. the coordinate ¢.

The beam then assumes a curvature x = 1:p, where p is the bending radius, and the
elastic strain ¢ varies through the section as (Timoshenko and Goodier, 1965)

&= —hiip. (%)
Here the surface of the beam for & = 1 is considered to be in compression, and that for
¢ = —1isin tension, which leads to the negative sign in the above equation.

As the applied moment increases. the stress developed in the beam due to bending at
point ¢ = 1 becomes exactly sufficient to cause first yield at that point. This corresponds to

(= 1-24. (6)

Thus. the normalised moment required for first yielding to occur is given by
My = S =1-2¢q N

Upon further increase in the moment plastic yielding propagates into the cross-section from
the compressive surface. For non-zero initial (quench) stresses, yielding initiates only on
one side of the cross-section, and an asymmetric stress profile develops, causing the neutral
axis to shift towards the tensile surface (Fig. 2).

Let us assume that as a result of yielding the plastic zone boundary lies a distance e
from the centre of the beam cross section. The stress distribution arising in the beam must
satisfy the following two criteria. Firstly, the stress must correspond to the yield limit
throughout the plastic region. Secondly, within the elastic region the stress must remain
proportional to the imposed strain, i.e. vary linearly.

The value of stress arising at the plastic zone boundary will be denoted by s. It is given
by

s=1() = — 1 —g(1—3e%). (8)

Our next step is to determine the normalised position of the neutral axis, denoted by
¢, as a function of e. In our analysis the neutral axis will be shifting from the cross-section
centroid towards the tensile beam surface, which corresponds to negative values of ¢.

Within the elastic region, the stress (&) in Fig. 2 is given by
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Fig. 2. Compressive plastic zone (shaded) in unilateral yielding. The plastic zone boundary is at

Z = e. The neutral axis position is § = ¢.
(&) = SL' . E<e, 9
e—
while in the plastic region
9 = —1—-¢(1-3). {>e (10)

Let us now impose the requirement of stress balance across the beam cross-section, which,
for the rectangular beam, is expressed in the form

(11

-
Y
[o¥)

o i

It
<

Performing the simple integration, we obtain

(]+('):' c4e (!
—2(€_(')A+ 7 S+JU

[—1—g(1-3)]dé = 0. (12)

P

Resolving this equation with respect to ¢ leads to the result

[g(3e” — 1) = 1](1 +¢)"
c=e— ; ; . (13)
2{[g(3e* — 1) = 1](1 +e) +eq(l —e*) — (1 —e)]

This leads to the variation of the magnitude of ¢ with ¢ that is shown in Fig. 3 for
0.1 < ¢< 0.5, indicating that while unilateral yielding persists the neutral axis moves pro-
gressively towards the tensile surface. The ¢ = 0 curve cannot be included here, since no
unilateral yielding occurs in this case.

Having determined the position of the neutral axis for any given extent of plastic zone
(any value of ) and a range of values of the quenching stress magnitude ¢, we can proceed
to calculate the moment. This is obviously given by
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Fig. 3. Variation of the neutral axis position, ¢. with the position of the plastic zone boundary, e, in
the unilateral vielding regime.
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Evaluating this expression we arrive at

m

s l+e* 3e(l—e)] | b

= —=(1 1 —e?)—-g(l—¢%). 15
@—o[ ST 41 —e) =3 q(l—e*) (15)
The variation of the normalised moment magnitude with the position of the plastic zone
boundary e is shown in Fig. 4. As one would expect. for g = 0.5 yielding occurs for any
non-zero moment, m > 0.
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Fig. 4. Normalised moment, m, vs the position of the plastic zone boundary. e. in the unilateral
yielding regime.
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The curvature x assumed by the beam when the plastic zone has advanced to ¢ may
now be determined as follows. The variation of strain ¢ throughout the cross-section is
proportional to the linear distance from the neutral axis, A({—c¢), with the coefficient
—k = 1/p. Choosing the point on the plastic zone boundary, where the stress is given by s,
we find

0,

K= b

s

. (16)

€—C

Note that the curvature at which first yielding takes place is easily found from the above

by substitutinge = 1, ¢ = 0, s = — 1+ 2¢ into the above equation, so that
o,
= =—(1—2g). 17
o = (1 -24) (7

For all values of curvature below «,, the beam remains fully elastic and a linear relationship
between moment and curvature is maintained, which may be expressed in the following
form:

m =(1—2q) o (18)

KV\'

As soon as k exceeds k;,, plastic yielding leads to a lowering of the moment with respect to
the fully elastic solution. In particular, this result implies that, for a given curvature, the
bars with high initial stresses carry less moment than those with lower initial stresses, because
plastic yielding occurs sooner. Conversely, residually stressed beams gain permanent shape
changes due to bending at lower moments compared with unstressed beams. The moment-
curvature diagrams, showing the variations of the normalised moment m vs normalise
curvature k/k,, may be constructed using the results obtained above. They are shown in
Fig. 5for¢g =0.1,0.2, 0.3 and 0.4.

For practical applications the diagrams obtained in this section must be used in the
reversed sense. This means that given a value of applied moment, the corresponding position
of the plastic zone boundary ¢ must be determined from Fig. 3, followed by the neutral
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axis position ¢ as a function of ¢ from Fig. 4. Alternatively, the beam curvature may be
found from Fig. 5 for any given value of normalised moment m.

2.3. Limits of unilateral yielding

In order to determine the limits of validity of the results obtained in the previous
section, we need to predict the onset of yvielding in tension. From Fig. 1(a), this phenomenon
will first take place when the stress at some point within the elastic region reaches the
corresponding tensile yield limit 7. which in most cases is likely to occur at the other surface
of the beam. Geometrically, this corresponds to the line drawn from the point (e, 5) via the
point on the neutral axis (c, 0) rouching or intersecting the tensile yield surface , at a certain
value of ¢ < 0. This line is given by eqn (9). It is not immediately obvious from either
analytical or graphical representation of the problem which of the above two cases occurs
first.

The case of the plastic zone propagating into the cross section from the tensile surface
of the beam we will call the bilateral yielding regime (Fig. 6(a)).
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Fig. 6. (a) Stress variation in the bilateral yielding regime. (b) Stress variation in the internal yielding
regime.
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The case of touching at & > —1 corresponds to the interesting phenomenon of tensile
yielding initiating within the beam. In this case, the plastic zone first initiates inside the
cross section, and then expands inwards and outwards, until a configuration similar to
bilateral yielding arises. We will call this case the internal yielding regime (Fig. 6(b)).

The condition for tensile yielding in tension to initiate at the specimen surface (¢ = — 1)
1s given by

s S= 42 (19)

from which we conclude that this mode of yielding imposes the following limit on the values
of ¢ for which the unilateral model is still applicable:

cle)< ¢ le) = S : (20)

Obtaining a concise limit expression from the consideration of the competing internal
yielding mode presents a somewhat more difficult problem. Points of intersection of the
line (9) with the tensile yield surface 7, are found from

P =1—g+3¢Z". (20
This leads to a quadratic equation for £, so that the condition of touching is given by the
discriminant D of this equation being equal to zero.

3

A SC
D= " vl2q[(lq)A}:0. (22)

(e—c)? e—c

The easiest way to resolve this equation is to recast it as a quadratic with the unknown
n = s/(e —c) with parameters, ¢. e, s,

n +12gen—12g(1 +5—¢q) = 0. (23)

Then, once the solutions for 5 are found in the form

/ 145~
Moo= —6qe(1¢ I 01 q’). (24)
N 3ge-
the limiting values of ¢ may be determined from
a=e— (25)

However, even once ¢, are determined in this way, additional checks must be made to
ensure that the corresponding touching points lie within the beam cross-section = —1. A
somewhat different approach will be used instead.

It 1s apparent from the above discussion that it 1s the competition between the two
tensile yielding modes that determines the manner in which yielding develops with increasing
applied moment.

In the next section, an assumption of bilateral yielding from the tensile surface is used,
and further results are obtained for the parameters ¢, m. k/xJ,, etc.
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In the subsequent section, a comparison is made between these results and a direct
numerical simulation of the yielding process. This analysis will demonstrate that the assump-
tion of bilateral yielding is valid for the vast majority of initial stress values and loading
conditions, and leads to highly accurate results.

2.4, Bilateral vielding
Let us assume that as a result of the application of external moment plastic yielding
has taken place in both compressive and tensile models. Fig. 6(a). The position of the

plastic zone boundary in compression will be again denoted by e, = ¢, with the stress given
by

s = —1—g+3gc. (26)

The position of the plastic zone boundary in tension will be denoted by e, with the
corresponding stress given by

s, = L—g+3ge;. 27

The location of the neutral axis will then be determined by the point on the line representing
the stress variation within the elastic region. for which 7(¢) = 0. It is given, from Fig. 6(a),
by the simple expression

.- s,e:sef‘ (28)

S, —5

The expression for the stress at an arbitrary point within the elastic region may. after some
simplifications, be given by

2(5 '()1)

(6) _el) ‘

(&) = 1—qg+3ge” — (29)

The strategy of solution will be somewhat different in this case from the one used for
unilateral yielding. Instead of focusing on the position of the neutral axis ¢, the boundary
of the tensile plastic zone ¢, will be chosen as the primary unknown, and ¢ and further
parameters will be determined afterwards using eqns (28). etc.

Since the stresses within the elastic region have now been expressed in terms of known
parameters and e,. and the stresses within the plastic regions are known to follow the
respective yield surfaces, we may invoke the stress balance requirement once again in the
form

e, ¢ o] :_ 2 l
f,(ct)+J {l—q+3qe2—_((' (’)’Jdai (5 dé =0, (30)
| ) €= ;

1Y [4

Evaluating the integrals and collecting the terms. we arrive at the following equation :
(e—e)2—gle—e,)’] = de. (31)

This equation describes the dependence of ¢, on the initial stress level g and the position of

the compressive plastic zone boundary e. It is convenient to choose for the primary unknown

in this equation not e, itself, but its combination with ¢ which corresponds to the extent of
the elastic region, ¢ = ¢ —e,. Recasting it in the form
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(32)

we obtain an equation which is amenable to effective numerical treatment. It can be solved
recursively by assuming an initial trial value of £ = g, & > 0 and substituting it into the
right hand side to obtain the first approximation ¢,. Generally, using

4e
811+| = 2 3 (33)

—qe;

where the subscript denotes the order of approximation. we obtain an algorithm which is
convergent in all physically meaningful cases.

The resulting solutions for c(e) are shown in Fig. 7, together with the unilateral yielding
results. Note that the two solutions merge smoothly for all values of g. Note that the
horizontal line ¢ = 0 gives the solution corresponding to the case g = 0, since in this case
the neutral axis coincides with the cross-section centroid for any size of plastic zone.

2.5. Numerical simulation

The results for all of the cases described above may be obtained from a simple numerical
simulation routine. The flow chart describing the algorithm is shown in Fig. 8. The position
of the compressive plastic zone boundary is varied in the range 0 < e < 1. For any chosen
value of e a trial value of the neutral axis position ¢ is chosen from the range —0.2 < ¢ < 0,
and the resultant force transmitted through the cross-section is calculated. This involves a
test which ensures that stresses at any point within the cross-section do not exceed the yield
limits.

It is clear from Fig. 6(a) that if ¢* denotes the true neutral axis position which provides
stress balance, then the stress integral taken across the section is negative for all ¢ < ¢* and
positive for all ¢ > ¢*. Any numerical algorithm, for example, simple dichotomy, may be
used to evaluate ¢ with given accuracy using this property of the solution.

A comparison of the results obtained using this algorithm with those of the preceding
sections shows that at ¢ > 0.3 a slight deviation between the analytical results and the
numerical simulation is observed at the junction of the unilateral and the bilateral yielding
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Fig. 8. Flow chart for the numerical algorithm used in the analysis.

End

regimes. An analysis of the plastic region boundaries shows that these deviations correspond
to the internal yielding mode.

Figure 9 shows the transition between the unilateral and bilateral regimes for ¢ = 0.4,
The curve obtained using the numerical algorithm shows the correct values. It is clear from
the graph that the bilateral solution leads to a very slight overestimate of the shift of the
neutral axis position, ¢. The range of e for which the discrepancy is observed corresponds
to the internal yielding regime. In this regime. the tensile plastic zone initiates within the
beam section and expands rapidly (for a small change in e) both inwards and outwards,
leading to the conditions assumed in the bilateral model. The evolution of the internal
plastic zone in this regime is shown in Fig. 10 for ¢ = 0.4 and ¢ = 0.5. Note that the
transition from unilateral to bilateral yielding regime via internal yielding happens over an
extremely narrow range of values of e. Therefore. unless internal yielding is a matter of
specific interest, it may be disregarded in the majority of practical cases.

01404 p ;
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01396 | b e N —
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Fig. 9. A comparison between the numerical results for the neutral axis position. ¢ (¢ = 0.4). and
the analytical solutions for the bilateral and unilateral regimes.
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It has been noted that from the practical viewpoint it is important to be able to
determine all relevant variables given the applied moment and an estimate of the level of
the initial stress. Figure 11 provides a master chart to be used for this purpose. For any
given value of m and ¢. the position of the compressive plastic zone boundary, e, can be
estimated using the curves given in the graph. The position of the neutral axis ¢ may then
be determined from Fig. 7. If the possibility of internal yielding is neglected, for the reasons
suggested in the previous paragraph, the pair of values e. ¢ will correspond either to the
unilateral or to the bilateral regime. Which of the two regimes is realised can be determined
depending on the branch of the curve ¢(e). The rising branch (positive slope) corresponds
to the bilateral regime, while the falling branch (negative slope) describes unilateral yielding.
Once the yielding mode has been established. the stress profile can be easily calculated using
the formulae from the corresponding section of this paper.

Finally, it is worth noting that the level of initial residual stresses may be estimated by
monitoring the moment-deflection relationship, since a change in the specimen compliance
takes place upon the onset of yielding.

3. RESIDUAL STRESS SHAKE-DOWN DUE TO BENDING

While there are very good mathematical reasons for dividing the stresses into initial
and ‘reaction’ components, from an engineering viewpoint it is more helpful to divide them
into permanent residual stresses and load related stresses. In order to evaluate the permanent
effect of plastic bending on the residual stresses and strains within the beam, il is necessary
to consider unloading from the maximum applied moment.

The results of the previous sections provide a framework allowing the determination
of the stress profiles at any value of applied moment. Upon the removal of external load
the beam unloads elastically, since the final residual stresses do not exceed the yield limit
at any point, as will be confirmed in the subsequent analysis. The amount of unloading

experienced by each point is linearly proportional to the distance from the section centroid,
¢=0,

T, = M. (34)

where #11s the maximum normalised applied moment.
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The process of elastic unloading from the maximum applied moment for the case of
unilateral yielding is illustrated in Fig. 12(a) by the arrows which show how the stresses
change as the applied bending moment is removed. The resulting stress profile 7, represents
the additional residual stresses developed in the beam due to bending.

In order to determine the final residual stress distribution, a combination of initial
quench stress with the additional bending-induced stresses must be calculated. The final
residual stress profile illustrates the plastic shake-down effect, and is shown in Fig. 12(b).
Since once again full residual stresses are considered in this figure. the tensile and com-
pressive vield limits are represented by the straight lines r = 1 and © = — I. respectively.

The final residual stress distribution consists of two regions. Within the region which
remained elastic throughout the loading history, the stress variation is represented by a
modified parabola. With respect to the initial stress profile, this parabola is shifted down-
wards and towards the surface that was bent in tension (Fig. 12(b)). The stress distribution
is determined by the combination of three components: the initial quench stress, the
‘reaction’ stresses developing in the beam at maximum applied moment. eqn (9), and the
elastic unloading. The resulting equation is

S —

&) = g1 =32 457 me (35)
e—c

In contrast to this, in the region(s) which experienced plastic flow the residual stress profile
is now given by a straight line. This line, which is shown short dashed in Fig. 12(b), has the
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Fig. 12. (a) Stress profiles corresponding to yielding under maximum applied moment. (), and
the additional residual stress due to bending. 7,(Z). after elastic unloading, which is indicated by the
arrows. (b) Initial {(quench) and additional (bending) residual stresses. combined to produce the
final residual stress profile 7,(Z) (g=0.4. m = 1.2). (¢) The final residual stress profile 7,({) arising
after bilateral vielding (¢ = 0.4, m = 1.4). (d) The final residual stress profile t,(Z) arising after

bilateral vielding (¢ = 0.4, m = 1.5).

1999

tangent which is equal to the maximum normalised applied moment, m. For £ = 0, it passes
through the point 7 = — 1. so that its equation is given by

(&) =mi — 1.

A similar line may be constructed for ¢ < 0. so that

(&) =mi+ 1.

(36)

(37

Note that this line lies everywhere above the modified parabola, provided no yielding in

tension has taken place.
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Fig. 12—continued.

The boundary between the two regions is determined by the intersection at point ¢ = e
of the straight line (36). for the plastic region. and the modified parabola (35). for the elastic
region.

Thus. unilateral plastic yielding leads to the shake-down of residual stresses throughout
the beam cross section. In particular, at the compressive surface the stress varies from —2g
to m—1, while at the tensile surface the stress becomes equal to

l+¢
—2¢—m—ys .
¢—c

Further increase in applied moment generally leads to bilateral yielding. The exception to
this rule, namely, the internal vielding case, arises over a very narrow range of normalised
applicd moment, leading to a residual stress distribution which is virtually indistinguishable
from the bilateral approximation.

The final residual stress profile arising upon unloading after bilateral yielding is shown
in Fig. 12(c). Note that since yielding occurred both at the compressive and the tensile
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surfaces, the stress variation follows the lines (36) and (37), respectively. In particular, the
residual stresses at the compressive and tensile surfaces shake down to the values of m—1
and 1 —m. respectively.

Within the elastic region the stress variation remains parabolic, although the peak of
the parabola shifts with respect to its initial position. The exact formula is constructed in a
manner which is entirely analogous to the unilateral case. i.e. by summation of the relevant
contributions from the initial quench stresses, the ‘reaction’ stress distribution at maximum
applied moment, and the elastic unloading stresses.

The application of the maximum moment. m = 1.5, leads to yielding occurring
throughout the section. The final residual stress profile is shown in Fig. 12(d). Complete
shake-down of initial stresses has taken place, and the residual stress profile is indis-
tinguishable from that of an initially unstressed beam.

From the above analysis. the residual stress at the compressive beam surface shakes
down to the value of m—1, i.e. varies linearly with the maximum normalised applied
moment. once the required for the initiation of vielding has been exceeded. The evolution
of the residual stress at the tensile beam surface is shown in Fig. 13. After the onset of
unilateral yielding, the stress follows one of the rising curves until the intersection with the
straight line 1 = | —m. when bilateral yielding takes place. Upon further increase in the
applied moment the stress approaches the limiting value of —0.5 along the straight line.

Apart from the principal parameter e. which denotes the position of the compressive
plastic zone boundary at maximum applied moment. a number of quantities which define
the residual stress shake-down effect may be identified. One such quantity is the amount of
change in the magnitude of siress on the compressive surface of the beam. Note that, as a
result of plastic bending, the near-surface stress in this region may change sign and become
tensile.

Also worthy of note is the change in the position and magnitude of the maximum
tensile stress within the beam. The shift of the peak may be described in terms of a
translation vector v.

It is clear from the above analysis that all such characteristics of the final residual
stress profile are determined by only two arguments: the maximum normalised applied
moment m. and the initial stress level (quench intensity) ¢.

Based on this result. the following procedure may be adopted for the analysis of
experimental measurements which involve plastic bending of residually stressed bars.

Firstly. let us suppose that. upen unloading the full stress profile through the bar
thickness has been evaluated. for example, using such techniques as neutron diffraction or
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synchrotron X-ray diffraction. The position of the plastic zone boundary at maximum load,
e, may then be found as the point in the stress profile where it changes from linear to
parabolic behaviour. Moreover, a special fitting function may be developed, which would
consist of a parabolic section in the elastic region, and a linear function within the plastic
zone. With the aid of this function, both the position of the plastic zone boundary e, and
the leading coefficient of the parabola. 3¢, may be estimated. Using this estimate, the
problem unknowns may be evaluated using the results presented in this paper. For example,
the intensity of the quench stress can be found from Fig. 11, provided the value of maximum
applied moment is known. Conversely, for known ¢ the maximum moment can be evaluated
using the same graph.

If the only information available is on the shake-down of the near-surface stresses,
then the results of experimental measurements must be matched to the predictions of the
analysis by trial-and-error. For example, for a known maximum applied moment. certain
levels of initial stresses (¢) must be assumed, and the surface stress shake-down calculated
using the technique presented here. The guess for ¢ must be improved, until satisfactory
agreement has been achieved.

4. CONCLUSIONS

An analysis of inelastic bending of an initially stressed beam has been presented.

The results allow one to determine the mode of plastic yielding which occurs in pure
bending. For any given level of the initial stresses due to quenching, the evolution of the
plastic region(s), neutral axis position and beam curvature with increasing values of applied
moment is predicted.

The shake-down of initial stresses is predicted by considering elastic unloading and
evaluating the additional retained stress profile. The application of the results to improved
analysis of experimental measurements is outlined.

Finally, a note should be made concerning the applicability of the model developed in
this paper to materials which show substantial deviations from the ideally plastic behaviour
assumed 1n the analysis.

If the material is work-hardening, a fully analytical treatment may turn out to be
impossible. However, the numerical algorithm described in the previous section can be
applied to obtain the dependence of the moment on the plastic zone extent, similar to the
way 1t has been done in this paper. Work hardening increases the carrying capacity of the
plastic regions, reducing both the extent of the plastic zone, 1 —e, and the shift of the
neutral axis position, ¢, for a given value of the maximum normalised applied moment.

The model may also be modified and adjusted to allow the analysis of two-phase
materials, such as metal matrix composites, for which only one of the phases can undergo
vielding under the application of bending stresses. Assumptions concerning the load-sharing
which takes place within the composite must be made.
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